

DO YOUR FIGURING HERE.

31. An abandoned area of town has the shape and dimensions of the blocks given below. All borders run either north-south or east-west. A surveyor has set up his equipment halfway between point M and point O. Which of the following is the location of the surveyor from point L?

- A. $9\frac{1}{2}$ blocks east and $4\frac{1}{2}$ blocks north
- B. 9 blocks east and 5 blocks north
- C. $10\frac{1}{2}$ blocks east and $4\frac{1}{2}$ blocks north D. $10\frac{1}{2}$ blocks east and $5\frac{1}{2}$ blocks north
- E. 12 blocks east and 9 blocks north
- **32.** Which of the following systems of inequalities is represented by the shaded region of the graph below?

33.	If $\sin \theta = \frac{4}{5}$ and $\frac{\pi}{2} < \theta < \pi$, then $\cos \theta = ?$
	A. $-\frac{4}{5}$
	B. $-\frac{3}{4}$
	C. $-\frac{3}{5}$
	D. $\frac{3}{5}$
	E. $\frac{5}{3}$

DO YOUR FIGURING HERE.

- **34.** A triangle, ΔPQR , is reflected across the x-axis to have the image $\Delta P'Q'R'$ in the standard (x,y) coordinate plane; thus, P reflects to P'. The coordinates of point P are (a,b). Which of the following coordinates best describes the location of point P'?
 - **F.** (*a*,*b*)
 - **G.** (a, -b)
 - **H.** (-a,b)

 - **J.** (-a, -b)**K.** Cannot be determined from the given information

$2 \land 2$

35. What is $\cos \frac{\pi}{12}$, given that $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$ and $\cos(\alpha - \beta) = \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta)$?

(Note: You may use the following table of values.)

θ	Sin 0	Cos θ			
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$			
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$			
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$			

A.
$$-\frac{1}{2}$$

B. $\frac{1}{2}$
C. $\frac{\sqrt{2}}{2}$
D. $\frac{\sqrt{2} - \sqrt{6}}{4}$
E. $\frac{\sqrt{2} + \sqrt{6}}{4}$

- **36.** The larger of two numbers exceeds twice the smaller number by 6. The sum of twice the larger number and 4 times the smaller number is 70. If x is the smaller number, which equation below determines the correct value of x?
 - F. 2(2x 4) + 6x = 70G. 2(2x + 6) + 4x = 70H. 2(2x - 6) + 4x = 70J. 4(2x + 6) + 2x = 70K. 4(2x - 6) + 2x = 70

DO YOUR FIGURING HERE.

37. In the figure shown below, each pair of intersecting line segments meets at a right angle, and all the lengths given are in inches. What is the perimeter, in inches, of the figure?

- **A.** 70
- B. 75C. 80
- **D.** 90
- **E.** 95

38. Which of the following statements describes the total number of dots in the first *n* rows of the triangular arrangement illustrated below?

1 st row					٠					
$2^{nd} row$				•	•	•				
3^{rd} row			٠	•	•	٠	٠			
$4^{th} row$		•	•	•	٠	٠	٠	٠		
5 th row	•	•	•	•	•	•	•	•	•	

- **F.** The total is equal to 2n, where *n* is the number of rows.
- **G.** The total is equal to n^2 , where *n* is the number of rows.
- **H.** The total is equal to *n*!, where *n* is the number of rows.
- **J.** The total is equal to 2^n , where *n* is the number of rows.
- **K.** The total is equal to $2^n n!$, where *n* is the number of rows.

DO YOUR FIGURING HERE.

 \triangle \triangle $\triangle 2$

- **39.** A certain parabola in the standard (x,y) coordinate plane opens downwards and has a vertex NOT at the origin (0,0). Which of the following equations could describe the parabola?
 - A. $x = 5y^2$ B. $y = 2(x + 3)^2 + 5$ C. $x = -2(y + 2)^2 + 4$ D. $y = -3x^2$ E. $y = -4(x + 1)^2 - 3$

40. The graph below shows the 2012 estimate of the five largest cities in the United States, to the nearest 1 million. According to the graph, the population of Houston makes up what fraction of the total population living in all five cities? Key: © = 1 million people.

City	Population
New York	$\odot\odot\odot\odot\odot\odot\odot\odot\odot\odot$
Los Angeles	$\odot \odot \odot \odot$
Chicago	$\odot \odot \odot$
Houston	00
Philadelphia	00

- **F.** $\frac{1}{11}$
- **G.** $\frac{1}{10}$
- **H.** $\frac{2}{19}$
- **J.** $\frac{3}{19}$
- **K.** $\frac{4}{19}$

END OF MINI-TEST FOUR

STOP! DO NOT GO ON TO THE NEXT PAGE UNTIL TOLD TO DO SO.

DO YOUR FIGURING HERE.